Sains Malaysiana 52(8)(2023): 2395-2406
http://doi.org/10.17576/jsm-2023-5208-15
Radiological
Impact Assessment of Natural Radionuclides and Heavy Metal Contamination in
Industrial Tin-Tailing Processing Effluent
(Penilaian Impak Radiologi Radionuklid Tabii dan Pelumusan Logam Berat dalam Efluen Industri Pemprosesan Amang)
NURSYAMIMI DIYANA RODZI1, AZNAN FAZLI
ISMAIL1,2,3,*, MUHAMMAD ABDULLAH RAHMAT1, ELI SYAFIQAH AZIMAN1 & WAN MOHD RAZI IDRIS3,4 & TUKIMAT LIHAN4
1Nuclear
Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Nuclear
Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3Center for
Water Research and Analysis, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
4Department
of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
Diserahkan: 10 November 2022/Diterima:
18 Julai 2023
Abstract
This study investigates the radiological
hazard and heavy metal contamination of water effluents from
Malaysian tin-tailing
processing plants. Samples were collected from retention pons in seven
separate tin tailing processing plants
scattered throughout the state of Perak,
Malaysia. Samples were analysed for radioactivity and heavy metal concentration
using Gamma-ray Spectrometry System and Inductively Coupled Plasma-Mass
Spectrometry, respectively. The analysis indicates that
the concentration of Radium-226 (226Ra), Radium-228 (228Ra),
and Potassium-40 (40K) in samples ranged from 2.4 - 34.9 Bq/l, 0.8 - 14.7 Bq/l,
and 19.5 - 299.4 Bq/l, respectively. These levels
surpassed the control limits (5 Bq/l and 10 Bq/l for 226Ra and 228Ra) set by the
regulatory authority. The analysis of the heavy
metal contamination showed that the concentration of
Arsenic (As) and Lead (Pb)
were higher than the Maximum
Concentration Level (MCL) of 0.01 and 0.015 mg/L, respectively. Further evaluation of radiological impact
showed that the average Annual Effective Doses (AED) by water ingestion and AED
for external exposure are 1.43±0.67 mSv/y and
1.71±0.79 mSv/y, respectively. While for
non-carcinogenic and carcinogenic risk assessments, the value of hazard index
and lifetime cancer risk is 2.1×10-10 and 1.2×10-7, respectively. These
research findings suggest that effective treatment of the effluent should be
implemented before discharge into the drainage system to prevent the
accumulation of radionuclides and heavy metals in the environment, which may
pose a risk to public health.
Keywords: Excess lifetime
cancer risk; heavy metal; natural radionuclide; radiological impact assessment;
tin-tailing
Abstrak
Kajian ini bertujuan menentukan
bahaya radiologi dan pelumusan logam berat daripada efluen kilang pemprosesan
amang. Sampel telah diambil daripada kolam tadahan di tujuh kilang pemprosesan
amang di sekitar negeri Perak, Malaysia. Keradioaktifan dan kepekatan logam
berat dalam sampel dianalisis masing-masing menggunakan Sistem Spektrometri
Sinar-Gama dan Spektrometri Jisim Plasma Gandingan Teraruh. Hasil analisis mendapati kepekatan Radium-226 (226Ra),
Radium-228 (228Ra) dan Kalium-40 (40K) dalam sampel masing-masing adalah antara 2.4 – 34.9 Bq/l, 0.8 –
14.7 Bq/l, dan 19.5 – 299.4 Bq/l. Nilai kepekatan ini didapati melepasi nilai had kawalan (5 Bq/l dan 10 Bq/l bagi 226Ra dan 228Ra) seperti yang ditetapkan oleh pihak berkuasa. Analisis terhadap pelumusan logam berat mendapati
kepekatan Arsenik (As) dan Plumbum (Pb) adalah lebih tinggi daripada Tahap
Kepekatan Maksimum (MCL) iaitu masing-masing 0.01 dan 0.015 mg/l. Penilaian impak radiologi selanjutnya mendapati bahawa purata Dos Berkesan Tahunan (AED) berpunca daripada pengambilan air efluen dan dedahan luaran masing-masing ialah 1.43±0.67 mSv/tahun dan 1.71±0.79 mSv/tahun. Manakala bagi penilaian risiko bukan karsinogen dan karsinogen nilai pengiraan indeks risiko dan penilaian risiko kanser sepanjang hayat (LCR) masing-masing bernilai 2.1×10-10 dan 1.2×10-7. Hasil kajian ini mencadangkan rawatan berkesan
terhadap efluen mesti dilakukan sebelum dibuang ke sistem perparitan bagi
mengelakkan pengumpulan radionuklid dan logam berat di alam sekitar yang boleh
menjejaskan kesihatan awam.
Kata kunci: Amang; logam berat; penilaian impak radiologi; risiko kanser sepanjang hayat; radionuklid tabii
RUJUKAN
Abdu Nasiru Muhammad,
Aznan Fazli Ismail & Nuraddeen Nasiru Garba. 2022. Annual effective dose
associated with radioactivity in drinking water from tin mining areas in
north-western Nigeria. Journal of Radiation Research and Applied Sciences 15(3): 96-102. https://doi.org/10.1016/j.jrras.2022.06.008
Abdullahi Shittu, Aznan
Fazli Ismail & Supian Samat. 2019. Determination of indoor doses and excess
lifetime cancer risks caused by building materials containing natural
radionuclides in Malaysia. Nuclear Engineering and Technology 51(1):
325-336. https://doi.org/10.1016/j.net.2018.09.017
AELB. 2010. Akta
Perlesenan Tenaga Atom 1984. Peraturan-Peraturan Pelesenan Tenaga Atom
(Perlindungan Sinaran Keselamatan Asas) 2010.
Ahmad, S. & Jones, D.
2013. The importance and significance of heritage conservation of the ex-tin
mining landscape in Perak, Malaysia, the abode of grace. The Asian
Conference on Asian Studies 2013: 38-54.
Ahmed, M., Matsumoto, M.,
Ozaki, A., Van Thinh, N. & Kurosawa, K. 2019. Heavy metal contamination of
irrigation water, soil, and vegetables and the difference between dry and wet
seasons near a multi-industry zone in Bangladesh. Water (Switzerland) 11(3). https://doi.org/10.3390/w11030583
Ajekiigbe, K.M., Olise,
F.S., Sejlo, G.T., Yinusa, S.T., Amadi, V.N. & Olaniyi, H.B. 2017. Gamma
spectrometric analysis of soil, sediment and water samples of granitic-Type
solid mineral mining activities. Journal of Radiation and Nuclear
Applications An International Journal 2(1): 29. https://doi.org/10.18576/jrna/020105
Al-Harmali, A. 2020.
Assessment of natural radioactivity hazards in selected water samples collected
from northern regions of Oman. IOP Conf. Series: Materials Science and
Engineering. No. 757.
Alidadi, H., Belin, S.,
Sany, T., Zarif, B., Oftadeh, G. & Mohamad, T. 2019. Health risk
assessments of arsenic and toxic heavy metal exposure in drinking water in
northeast Iran. Environmental Health and Preventive Medicine 24(59):
1-17.
Almayahi, B.A., Tajuddin,
A.A. & Jaafar, M.S. 2012. Radiation hazard indices of soil and water
samples in northern Malaysian Peninsula. Applied Radiation and Isotopes 70(11): 2652-2660. https://doi.org/10.1016/j.apradiso.2012.07.021
Alnour, I.A., Wagiran, H.,
Ibrahim, N., Hamzah, S. & Elias, M.S. 2017. Determination of the elemental
concentration of uranium and thorium in the products and by-products of amang
tin tailings process. AIP Conference Proceedings 1799.
https://doi.org/10.1063/1.4972913
ANZECC & ARMCANZ.
2000. Australian and New Zealand Guidelines for Fresh and Marine Water
Quality.
Arshad, H., Zahid Mehmood,
M., Hussain Shah, M. & Abbasi, A.M. 2020. Evaluation of heavy metals in
cosmetic products and their health risk assessment. Saudi Pharmaceutical
Journal 28(7): 779-790. https://doi.org/10.1016/j.jsps.2020.05.006
ATSDR. 2020. Support
Document to the 2019 Substance Priority List. April: 1-9. www.atsdr.cdc.gov/SPL
ATSDR. 2015. Arsenic -
ToxFAQsTM. ToxFAQs. 2015. http://www.atsdr.cdc.gov/toxfaqs/index.asp
DOE Malaysia. 2009. Environmental
Quality (Industrial Effluent) Regulations 2009. Percetakan Nasional
Malaysia Berhad.
Dunca, A.M. 2018. Water
pollution and water quality assessment of major transboundary rivers from Banat
(Romania). Journal of Chemistry 2018: 9073763.
https://doi.org/10.1155/2018/9073763
Eli Syafiqah Aziman, Aznan
Fazli Ismail, Siti Fatimah Jubri, Muhammad Abdullah Rahmat & Wan Mohd Razi
Idris. 2021. Environmental impact assessment of post illegal mining activities
in Chini Lake with regards to natural radionuclides and heavy metals in water and
sediment. Journal of Radioanalytical and Nuclear Chemistry 330(3):
667-683. https://doi.org/10.1007/s10967-021-08049-4
El-Gamal, H., Sefelnasr,
A. & Salaheldin, G. 2019. Determination of natural radionuclides for water
resources on the west bank of the Nile River, Assiut Governorate, Egypt. Water 11(2): 311. https://doi.org/10.3390/w11020311
Gregory, A.O., Emmanuel,
E. & Ezekiel, A.O. 2013. Gamma spectroscopy analysis of produced water from
selected flow stations in Delta State, Nigeria. International Journal of
Environmental Monitoring and Analysis 1(5): 167-174.
https://doi.org/10.11648/J.IJEMA.20130105.11
Hamzah, Y., Mardhiansyah,
M. & Firdaus, L.N. 2018. Characterization of rare earth elements in tailing
of ex-tin mining sands from Singkep Island, Indonesia. Aceh International
Journal of Science and Technology 7(2): 131-137.
https://doi.org/10.13170/aijst.7.2.8622
IAEA. 2014. A Procedure
for the Rapid Determination of 226Ra and 228 Ra in Drinking Water by Liquid
Scintillation Counting. International Atomic Energy Agency.
IAEA. 1989. Technical
Report Series No. 295: Measurement of Radionuclides in Food and the Environment.
Ismail Bahari, Nasirian
Mohsen & Pauzi Abdullah. 2007. Radioactivity and radiological risk
associated with effluent sediment containing technologically enhanced naturally
occurring radioactive materials in amang (tin tailings) processing industry. Journal
of Environmental Radioactivity 95(2-3): 161-170.
https://doi.org/10.1016/j.jenvrad.2007.02.009
Ismail, B., Yasir, M.S.,
Redzuwan, Y. & Amran, A.M. 2003. Radiological environment risk associated
with different water system in amang factory. Pakistan Journal Of Biological
Science 6(17): 1544-1547.
JMG. 2016. Malaysian
Minerals Yearbook 2016. Department of Mineral and Geoscience Malaysia.
Kanayochukwu, J., Ijeoma,
H. & Onyenezi, J. 2019. Health risk assessment of cadmium, chromium and
nickel from car paint dust from used automobiles at auto-panel workshops in
Nigeria. Toxicology Reports 6: 449-456.
https://doi.org/10.1016/j.toxrep.2019.05.007
Khoirul Solehah Abdul
Rahim, Zalita Zainuddin, Mohd Idzat Idris, Wahmisari Priharti, Murtadha S.H.
Aswood, Solehah Khoirul Abdul Rahim, Zalita Zainuddin, Wahmisari Priharti &
Murtadha Aswood Sh. 2020. Determination of the radiological risk from the
natural radioactivity in irrigation at selected areas of Peninsular Malaysia. Sains
Malaysiana 49(6): 1439-1450. https://doi.org/10.17576/jsm-2020-4906-22
Matthew Tikpangi Kolo,
Siti Aishah Binti Abdul Aziz, Mayeen Uddin Khandaker, Khandoker Asaduzzaman
& Yusoff Mohd Amin. 2015. Evaluation of radiological risks due to natural
radioactivity around lynas advanced material plant environment, Kuantan, Pahang,
Malaysia. Environmental Science and Pollution Research 22(17):
13127-13136. https://doi.org/10.1007/s11356-015-4577-5
Li, R., Kuo, Y.M., Liu,
W.W., Jang, C.S., Zhao, E. & Yao, L. 2018. Potential health risk assessment
through ingestion and dermal contact arsenic-contaminated groundwater in
Jianghan Plain, China. Environmental Geochemistry and Health 40(4):
1585-1599. https://doi.org/10.1007/S10653-018-0073-4
Liang, Y., Yi, X., Dang,
Z., Wang, Q., Luo, H. & Tang, J. 2017. Heavy metal contamination and health
risk assessment in the vicinity of a tailing pond in Guangdong, China. International
Journal of Environmental Research and Public Health 14(12): 1557.
https://doi.org/10.3390/ijerph14121557
Mohammadi, A.A., Zarei,
A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M.H., Alinejad, A.,
Yousefi, M., Hosseingholizadeh, N. & Ghaderpoori, M. 2019. Carcinogenic and
non-carcinogenic health risk assessment of heavy metals in drinking water of
Khorramabad, Iran. MethodsX 6: 1642-1651. https://doi.org/10.1016/j.mex.2019.07.017
Mohsen Nasirian, Ismail
Bahari & Pauzi Abdullah. 2008. Assessment of natural radioactivity in water
and sediment from amang (tin tailing) processing ponds. The Malaysian
Journal of Analytical Sciences 12(1): 150-159.
Muhamad Samudi Yasir, Amran
Ab Majid, Redzuwan Yahaya, Ismail Bahari & Wong Siew Kim. 2007. Impak
aktiviti pemprosesan amang sistem tertutup ke atas kualiti air dan sedimen
setempat. The Malaysian Journal of Analytical Sciences 11(2): 370-378.
Muhammad Abdullah Rahmat,
Aznan Fazli, Eli Syafiqah, Nursyamimi Diyana, Faizal Mohamed & Irman Abdul.
2022. The impact of unregulated industrial tin-tailing processing in Malaysia:
Past, present and way forward. Resources Policy 78: 102864.
https://doi.org/10.1016/j.resourpol.2022.102864
Muhammad Abdullah Rahmat,
Aznan Fazli Ismail, Nursyamimi Diyana Rodzi, Eli Syafiqah Aziman, Wan Mohd Razi
Idris, Tukimat Lihan, Wan Mohd Razi Idris & Tukimat Lihan. 2021. Assessment
of natural radionuclides and heavy metals contamination to the environment: Case
study of Malaysian unregulated tin-tailing processing industry. Nuclear
Engineering and Technology 54(6): 2230-2243.
https://doi.org/10.1016/j.net.2021.12.013
Nasirian Mohsen, Bahari
Ismail, Pauzi Abdullah & Azizah Jaafar. 2007. Gamma hazards and risk associated
with norm in sediment from amang processing recycling ponds. The Malaysian
Journal of Analytical Science 11(1): 314-323.
Ogungbemi, K.I., Adedokun,
M.B., Ibitoye, A.Z., Oyebola, O.O. & Owoade, R.L. 2023. Estimation of
radiological impact of the activities of olusosun dump site on workers and
dwellers of Olusosun, in Lagos Southwest Nigeria. Journal of Radiation
Research 64(1): 53-62. https://doi.org/10.1093/jrr/rrac067
Post, G. 2003. Environmental
Assessment and Risk Analysis Element: Dermal Absorption of Inorganic Arsenic
from Water. New Jersey Department of Environmental Protection Division of
Science, Research and Technology.
Rehman, K., Fatima, F.,
Waheed, I. & Hamid Akash, M.S. 2018. Prevalence of exposure of heavy metals
and their impact on health consequences. Journal of Cellular Biochemistry 119(1): 157-184. https://doi.org/10.1002/jcb.26234
Renu, K., Chakraborty, R.,
Myakala, H., Koti, R., Famurewa, A.C., Madhyastha, H., Vellingiri, B., George,
A. & Gopalakrishnan, A.V. 2021. Molecular mechanism of heavy metals (lead,
chromium, arsenic, mercury, nickel and cadmium) - induced hepatotoxicity - A
review. Chemosphere 271: 129735.
https://doi.org/10.1016/j.chemosphere.2021.129735
Saha, N., Safiur Rahman,
M., Ahmed, M.B., Zhou, J.L., Ngo, H.H. & Guo, W. 2017. Industrial metal
pollution in water and probabilistic assessment of human health risk. Journal
of Environmental Management 185: 70-78.
https://doi.org/10.1016/j.jenvman.2016.10.023
Sanusi, M.S.M., Ramli,
A.T., Hashim, S. & Lee, M.H. 2021. Radiological hazard associated with
amang processing industry in Peninsular Malaysia and its environmental impacts. Ecotoxicology and Environmental Safety 208: 111727.
https://doi.org/10.1016/j.ecoenv.2020.111727
Shu’aibu, H.K., Khandaker,
M.U., Baballe, A., Tata, S. & Adamu, M.A. 2021. Determination of radon
concentration in groundwater of Gadau, Bauchi State, Nigeria and estimation of
effective dose. Radiation Physics and Chemistry 178: 108934.
https://doi.org/10.1016/j.radphyschem.2020.108934
Siti Khairunnisaq Rudzi,
Ho Yu Bin & Intan Idayu Abd Khani. 2018. Heavy metals contamination in
paddy soil and water and associated dermal health risk among farmers. Malaysian
Journal of Medicine and Health Sciences 14: 2-10.
Song, D., Zhuang, D.,
Jiang, D., Fu, J. & Wang, Q. 2015. Integrated health risk assessment of
heavy metals in Suxian County, South China. International Journal of
Environmental Research and Public Health 12(7): 7100-7117.
https://doi.org/10.3390/ijerph120707100
UNSCEAR. 2000. Sources and
effects of ionizing radiation, united nations scientific committee on the
effects of atomic radiation UNSCEAR 2000 report to the general assembly. UNSCEAR
Report I: 1-556.
USEPA. 2004. Risk
Assessment Guidance for Superfund (RAGS) Volume I. Human Health Evaluation
Manual (HHEM). Part E. Supplemental guidance for dermal risk assessment. USEPA 1 (540/R/99/005). https://doi.org/EPA/540/1-89/002
WHO. 2006. Guidelines
for Drinking-Water Quality. Geneva: World Health Organization.
Zaini Hamzah, Nor Monica
Ahmad & Ahmad Saat. 2009. Determination of heavy minerals in ‘amang’ from
Kampung Gajah ex-mining area. The Malaysian Journal of Analytical Sciences 13(2): 194-203.
*Pengarang untuk surat-menyurat; email:
aznan@ukm.edu.my
|